On the asymptotics of penalized spline smoothing
نویسندگان
چکیده
Abstract: This paper performs an asymptotic analysis of penalized spline estimators. We compare P -splines and splines with a penalty of the type used with smoothing splines. The asymptotic rates of the supremum norm of the difference between these two estimators over compact subsets of the interior and over the entire interval are established. It is shown that a Pspline and a smoothing spline are asymptotically equivalent provided that the number of knots of the P-spline is large enough, and the two estimators have the same equivalent kernels for both interior points and boundary points.
منابع مشابه
Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کاملOn The Asymptotics Of Penalized Splines
The asymptotic behaviour of penalized spline estimators is studied in the univariate case. We use B -splines and a penalty is placed on mth-order differences of the coefficients. The number of knots is assumed to converge to infinity as the sample size increases. We show that penalized splines behave similarly to Nadaraya-Watson kernel estimators with ‘equivalent’ kernels depending upon m. The ...
متن کاملEstimating penalized spline regressions: Theory and application to economics
In this paper we give a brief survey of penalized spline smoothing. Penalized spline smoothing is a general non-parametric estimation technique which allows to fit smooth but else unspecified functions to empirical data. While penalized spline regressions are quite popular in natural sciences only few applications can be found in economics. We present an example demonstrating how this non-param...
متن کاملEstimating curves and derivatives with parametric penalized spline smoothing
Accurate estimation of an underlying function and its derivatives is one of the central problems in statistics. Parametric forms are often proposed based on the expert opinion or prior knowledge of the underlying function. However, these strict parametric assumptions may result in biased estimates when they are not completely accurate. Meanwhile, nonparametric smoothing methods, which do not im...
متن کاملA note on bimodality in the log-likelihood function for penalized spline mixed models
For a smoothing spline or general penalized spline model, the smoothing parameter can be estimated using residual maximum likelihood (REML) methods by expressing the spline in the form of a mixed model. The possibility of bimodality in the profile log-likelihood function for the smoothing parameter of these penalized spline mixed models is demonstrated. A canonical transformation into independe...
متن کامل